

Issue date: 1st January 2026

Outlook for January 2026

1. Current Meteorological Conditions

Overall below normal rainfall was observed during December 2025. Two rainfall spells of light to moderate intensity primarily affected the western and northwestern regions of the country. Light rainfall was recorded in different parts of Balochistan, northern Punjab, Khyber Pakhtunkhwa, Azad Jammu and Kashmir and isolated places of Gilgit-Baltistan. Southern Punjab and several parts of Sindh also received light rainfall during the last week of December, which helped alleviate the prolonged dry conditions prevailing in these areas. Meanwhile, temperatures remained mostly above normal in most parts of the country, with the highest positive anomaly observed in Gilgit-Baltistan, followed by Khyber Pakhtunkhwa and Balochistan (Table 1).

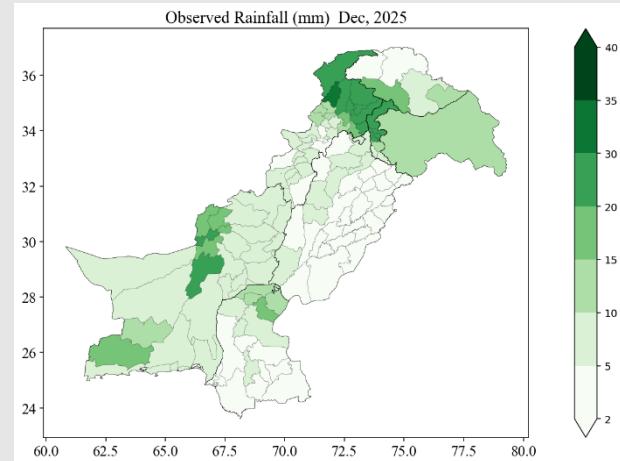
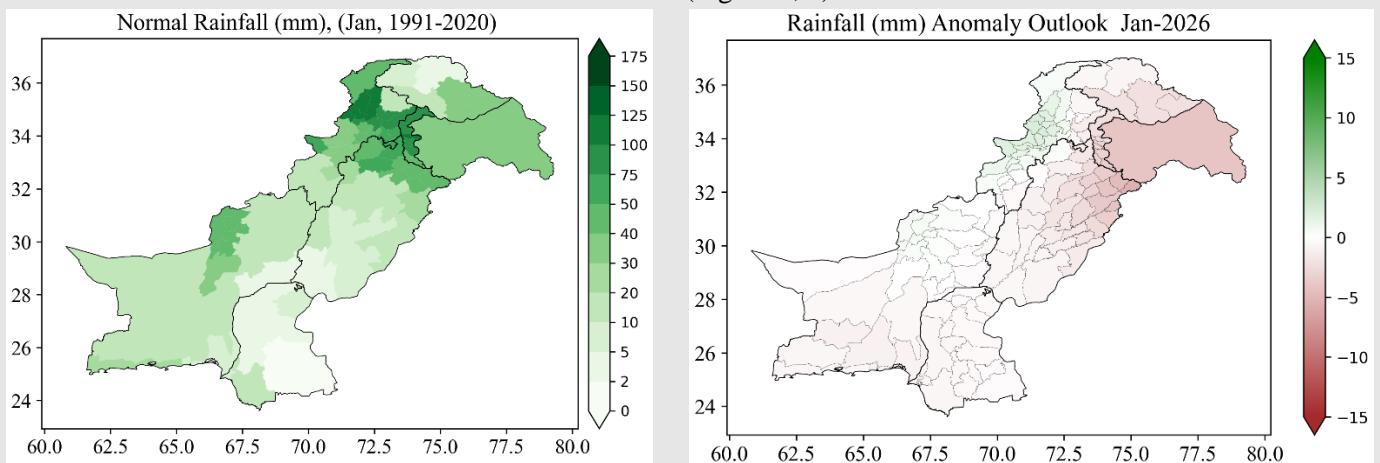


Figure 1 Observed Rainfall, December 2025

Considering the prevailing climatic conditions in the country, characterized by generally dry conditions accompanied by above-normal temperatures across most regions, it is important to note that the winter season so far has evolved in line with the outlook issued by the Pakistan Meteorological Department (PMD) prior to the onset of the season. This observed consistency provides a clear rebuttal to the anonymous claims circulated in the media regarding the likelihood of extreme winter conditions this year. The public is therefore advised to stay connected with PMD updates to receive timely, accurate, and authentic weather and climate information.


Table 1: Summary of December 2025 Observed Rainfall and Temperature

Region	Total Rainfall (mm)	Normal* Rainfall (mm)	Rainfall Departure (%)	Mean Temp (°C)	Anomaly (°C)
Pakistan	10.3	15.8	-34.8	13.8	1.2
AJK	28.2	46.8	-39.7	11.6	0.1
Balochistan	11.8	13.2	-11.0	15.0	1.2
Gilgit-Baltistan	8.1	10.9	-25.9	5.9	2.3
Khyber Pakhtunkhwa	15.5	25.7	-39.7	11.5	1.5
Punjab	3.7	13.8	-73.2	14.4	0.9
Sindh	7.9	4.6	71.7	18.5	0.7

* Normal Period (1991 – 2020)

2. Monthly Rainfall Outlook:

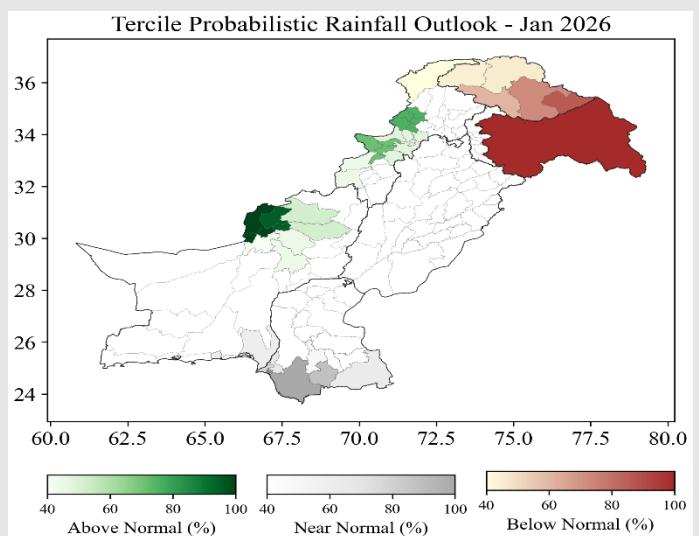
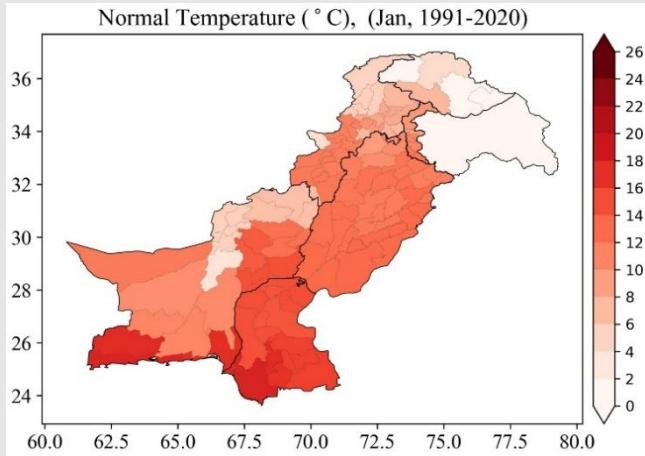
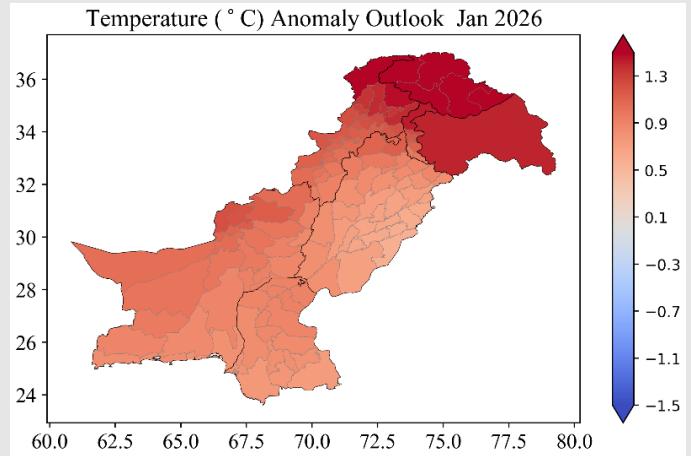

The Multi-Model Ensemble (MME) based monthly outlook is derived from the outputs of eight global seasonal prediction models with optimal skill. The output of the selected models is used to generate operational outlooks for monthly and seasonal rainfall and temperature. The state of the global earth system suggests that, the El Niño–Southern Oscillation (ENSO), currently in a marginally negative phase, is expected to shift to a neutral phase and remains in the same phase for the forecast month. Meanwhile, the Indian Ocean Dipole (IOD) is in a neutral phase and is expected to persist in the same phase during forecast month. Based on this analysis, a general tendency for **near-normal*** rainfall is anticipated across most parts of the country during January 2026, with slightly negative anomalies over northeastern Punjab, Kashmir, and Gilgit-Baltistan. Central and southern regions, including Sindh, southern Punjab, and much of Balochistan, are expected to remain close to climatological averages. A localized area of **slightly above-normal rainfall** is indicated over northwestern Pakistan, likely associated with winter western disturbance activity, while no widespread extreme anomalies are anticipated, nevertheless, localized extreme rainfall events cannot be ruled out. (Figure 2, 3).

Figure 2: Normal (1991-2020) rainfall for January

Figure 3: Monthly rainfall anomaly for January 2026


The probabilistic rainfall outlook reflects a consensus among all models used in the ensemble. The tercile probability forecast (Figure 4) indicates that most ensemble members predict the likelihood of near normal rainfall over most parts of the country. However, Gilgit Baltistan and northern Khyber Pakhtunkhwa may get below normal rainfall, whereas western parts of Khyber Pakhtunkhwa and northwestern parts of Balochistan are likely to receive above normal rainfall during January 2026.


Figure 4: Probabilistic rainfall outlook for January 2026

3. Monthly Temperature Outlook:

Mean temperatures are expected to remain **above normal*** nationwide, with maximum departure over Gilgit-Baltistan, Kashmir and northern Khyber Pakhtunkhwa in January 2026 (Figure 5, 6).

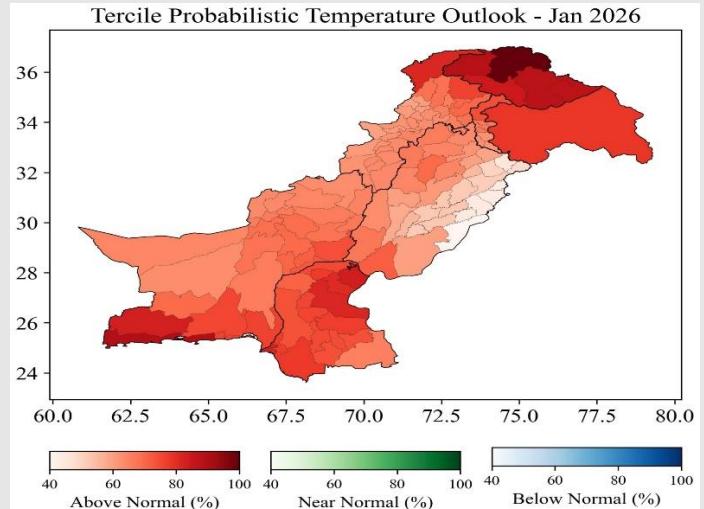


Figure 5: Normal (1991-2020) temperature for January 2026

Figure 6: Monthly temperature anomaly outlook for January 2026

The tercile probabilistic temperature outlook (Figure 7) indicates that the majority of the models agree on the **above-normal** temperatures across the country. The likelihood of warmer-than-normal conditions is particularly strong over northern regions, including Gilgit-Baltistan and Kashmir, as well as southern Pakistan, including Sindh and the coastal belt of Balochistan for the month of January 2026.

Figure 7: Probabilistic temperature outlook for January 2026

Impacts:

- Normal rainfall over most parts of the country is likely to support Rabi crop growth, particularly in rain-fed regions. However, in the southern parts of the country; Sindh, Balochistan, and southern Punjab, near-normal rainfall combined with above-normal daytime temperatures and generally low climatological rainfall is unlikely to substantially improve soil moisture conditions. As a result, soil moisture stress is expected to persist in these areas, which may adversely affect crop growth during the period.
- Above-normal temperatures may accelerate crop development, leading to early maturation, particularly in central to southern areas. This could shorten the grain-filling stage of early-sown wheat and barley, potentially resulting in reduced yields.
- Dry conditions with slightly above-normal temperatures in January 2026 will favour post-harvest handling and storage of rice, reducing losses from residual moisture or delayed drying.
- Above-normal temperatures in January 2026, particularly over southern regions, are albeit unlikely to increase vector-borne disease risk, as prevailing winter conditions remain unfavorable for mosquito activity across Punjab, Sindh, and Balochistan.
- Near-normal rainfall in January 2026 may limit reservoir replenishment, particularly in regions dependent on January precipitation for water storage. Water management authorities should closely monitor reservoir levels and prepare contingency measures should dry conditions persist.
- A decline in air quality may result in smog formation in the plains of the country, posing health risks for sensitive groups, particularly children and the elderly. This can exacerbate respiratory illnesses, particularly affecting those with asthma or other chronic lung conditions.
- The dryness and cool nights are expected to promote fog formation, especially in Punjab and adjoining areas of northern Sindh. Reduced visibility due to fog could disrupt highway travel and cause delays at major roadways and airports, particularly during late night early hours of the day.

Note: The seasonal outlook is updated monthly in the first week of the month. The forecast reliability varies with location, time of year, and global ocean/atmospheric conditions. It provides general trends using probabilities rather than precise predictions and compares expected conditions to historical averages. For better decision-making, it should be used alongside short-term forecasts and other climate data issued by PMD.